Fuzzy rw -Connectedness and Fuzzy rw -Disconnectedness in Fuzzy Bitopological Spaces

P. Revathi¹ and A. Vadivel²

¹Govt. Polytechnic for Women, TPK Road, Madurai-625 011; Department of Mathematics (FEAT), Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, ²Post Graduate and Research Department of Mathematics, Government Arts College (Autonomous). Karur, Tamil Nadu-639 005; Department of Mathematics, Annamalai University, Annamalai Nagar-608 002, India.

In this paper, two weaker forms of connectedness namely, pairwise fuzzy super *rw*-disconnectedness and pairwise fuzzy strong *rw*-connectedness are introduced and studied in fuzzy bitopological spaces. Also two stronger forms of *rw*-disconnectedness namely, pairwise fuzzy total *rw*-disconnectedness and pairwise fuzzy extremally *rw*-disconnectedness in fuzzy bitopological spaces are defined and studied. Some characterizations and properties of these spaces are also established.

Key words and phrases: Pairwise fuzzy *rw*-connected, pairwise fuzzy super *rw*-connected, pairwise fuzzy strongly *rw*-connected, pairwise fuzzy extremally *rw*-disconnected. **AMS (2000) subject classification:** 54E55.

1.

Introduction and Preliminaries

Fuzzy relations were first introduced by Lofti A. Zadeh in 1971 [24]. Fuzzy sets have application in applied fields such as information [18], control [19, 20] and pattern reognition [13, 17]. This concept has been applied by many authors to several branches of mathematics particuarly in the fields such as fuzzy numbers[5], fuzzy groups[21], fuzzy topological groups[7], *L*-fuzzy sets[9], fuzzy linear spaces[10], fuzzy algebra [12] fuzzy vector spaces [15] and fuzzy proximity space[16]. One of the applications was the study of fuzzy topological spaces [4] introduced and studied by chang in 1968. Ever since the introducting of fuzzy topological spaces notions like fuzzy regular open [1] and fuzzy regular semiopen [23] were extended from general topological structures.

The concept of *rw*-open sets and fuzzy *rw*-open sets was introduced and studied by Wali[23], fuzzy *rw*-connectedness and fuzzy *rw*-disconnectedness was introduced and studied by Vadivel [22] motivated us to study on fuzzy *rw*-connectedness in fuzzy bitopological space [14] (in short fbts). In this paper, two weaker forms of connectedness namely, pairwise fuzzy super *rw*-disconnectedness and pairwise fuzzy strong *rw*-connectedness are introduced and studied in fuzzy bitopological spaces. Also two stronger forms of *rw*-disconnectedness namely, pairwise fuzzy total *rw*-disconnectedness and pairwise fuzzy extremally *rw*-disconnectedness in fuzzy bitopological spaces are defined and studied. Some characterizations and properties of these spaces are also established.

Throughtout the paper I will denote the unit interval [0,1] of the real line R. X,Y,Z will be nonempty sets. The symbols $\lambda, \mu, \gamma, \eta \dots$ are used to denote fuzzy sets and all other symbols have their usual meaning unless explicitly stated.

Definition 1.1 A fuzzy set λ in a fts (X, τ) is said to be fuzzy regular open set [1] if $int(cl\lambda) = \lambda$ and a fuzzy regular closed set if $cl(int(\lambda)) = \lambda$,

(iii) fuzzy regular semi open [25] if there exists fuzzy regular open set σ in X such that $\sigma \le \alpha \le cl(\sigma)$.

Definition 1.2 A fts (X,T) is said to be fuzzy connected [11] if it has no proper fuzzy clopen set. Otherwise it is called fuzzy disconnected.

Definition 1.3 A fuzzy set λ in fts (X,T) is proper if $\lambda \neq 0$ and $\lambda \neq 1$.

Definition 1.4 A fts (X,T) is called fuzzy super connected [6] if it has no proper fuzzy regular open set.

Definition 1.5 A fts (X,T) is called fuzzy strongly connected [2] if it has no non-zero fuzzy closed sets λ and μ such that $\lambda + \mu \leq 1$.

Definition 1.6 A fts (X,T) is said to be fuzzy extremally disconnected [2] if $\lambda \in T$ implies $Cl(\lambda) \in T$.

Definition 1.7 A fts (X,T) is said to be fuzzy totally disconnected [2] if and only if for every pair of fuzzy points p,q with $p \neq q$ in (X,T) there exists non-zero fuzzy open sets λ, μ such that $\lambda + \mu = 1$, λ contains p and μ contains q. Suppose $A \subset X$. A is said to be a fuzzy totally disconnected subset of X if A as a fuzzy subspace of (X,T) is fuzzy totally disconnected.

Definition 1.8 Let (X,T) be fts and Y be an ordinary subset of X. Then $T/Y = \{\lambda/Y : \lambda \in T\}$ is a fuzzy topology on Y and is called the induced or relative fuzzy topology. The pair (Y,T/Y) is called a fuzzy subspace [8] of (X,T). (Y,T/Y) is called fuzzy open (fuzzy closed) subspace if the characteristic function of Y viz., χ_Y is fuzzy open (fuzzy closed).

Definition 1.9 A fuzzy set λ in a fts (X, τ) is said to be a fuzzy regular weakly closed set (briefly, frw-closed) [23] if $cl(\lambda) \le \mu$, whenever $\lambda \le \mu$ and μ is fuzzy regular semi-open in X.

From this definition it is clear that λ is fuzzy r_w -open $\Leftrightarrow 1-\lambda$ is fuzzy r_w -closed. Also we define T_i -fuzzy r_w -interior and T_i -fuzzy r_w -closure of λ , denoted by r_w - $Int_{T_i}(\lambda)$ and r_w - $Cl_{T_i}(\lambda)$ respectively, for i = 1, 2, as follows:

- (i) rw- $Int_{T_i}(\lambda) = \bigvee \{ \mu / \mu \text{ is } T_i \text{-} \text{fuzzy } rw \text{-} \text{open set and } \mu \leq \lambda \}$
- (ii) $rw Cl_{T_i}(\lambda) = \bigwedge \{ \mu / \mu \text{ is } T_i \text{fuzzy } rw \text{closed set and } \mu \ge \lambda \}$

For any fuzzy set λ in a fuzzy bitopological space (X, T_1, T_2) we have the following results. (i) $1 - rwCl_{T_i}(\lambda) = rwInt_{T_i}(1-\lambda)$ and (ii) $1 - rwInt_{T_i}(\lambda) = rwC_{T_i}(1-\lambda)$ for i = 1, 2.

Definition 1.10 A fuzzy set λ in fbts (X,T_1,T_2) is said to be (T_1,T_2) -fuzzy rwclopen if it is T_1 -fuzzy rw-closed as well as T_2 -fuzzy rw-open.

A fuzzy set λ in a fbts (X, T_1, T_2) is T_i -fuzzy rw-open iff $\lambda = rwInt_{T_i}(\lambda)$ and T_i -fuzzy rw-closed iff $\lambda = rwCl_{T_i}(\lambda)$ for i = 1, 2.

We shall denote the class of all fuzzy rw-open sets in T_i and fuzzy rw-closed sets in T_i of the fuzzy bitopological space (X, T_1, T_2) by $FRWO_{T_i}$ and $FRWC_{T_i}$ for i = 1, 2.

Pairwise Fuzzy *rw*-Connected Spaces

Definition 2.1 A fbts (X,T_1,T_2) is said to be pairwise fuzzy rw-connected $\Leftrightarrow X$ has no proper fuzzy sets λ_1 and λ_2 which are T_1 -fuzzy rw-open and T_2 -fuzzy rw-open respectively such that $\lambda_1 + \lambda_2 = 1$. A fbts (X,T_1,T_2) is pairwise fuzzy rw-disconnected if it is not pairwise fuzzy rw-connected.

Remark 2.1 The pairwise fuzzy rw-connectedness of (X,T_1,T_2) is not governed by the fuzzy rw-connectedness of the spaces (X,T_1) and (X,T_2) as the following example shows:

Example 2.1 Let $X = \{a, b\}, T_1$ be the discrete fuzzy topology, T_2 be the indiscrete fuzzy topology, $T_3 = \{0, 1, \lambda\}$ where $\lambda : X \rightarrow [0,1]$ is such that $\lambda(x) = 0$ if $x = b, \lambda(x) = 1$ if x = a and $T_4 = \{0,1,\mu\}$ where $\mu : X \rightarrow [0,1]$ is such that $\mu(x) = 0$ if x = a and $\mu(x) = 1$ if x = b. Then (X, T_1, T_2) is pairwise fuzzy rw-connected but (X, T_1) is not fuzzy rw-connected and (X, T_2) is fuzzy rw-connected[22]. Also (X, T_3, T_4) is not pairwise fuzzy rw-connected but (X, T_3) and (X, T_4) are both fuzzy rw-connected.

The following proposition gives some characterizations of pairwise fuzzy *rw*-connected fbts.

Proposition 2.1 The following statements are equivalent for a fbts (X,T_1,T_2) .

(i) (X,T_1,T_2) is pairwise fuzzy *rw*-connected.

(ii) There exists no T_1 -fuzzy rw-open set $\lambda_1 \neq 0$ and a T_2 -fuzzy rw-open set $\lambda_2 \neq 0$ such that $\lambda_1 + \lambda_2 = 1$.

(iii) There exists no T_1 -fuzzy r_w -closed set $\lambda_1 \neq 1$ and a T_2 -fuzzy r_w -closed set $\lambda_2 \neq 1$ such that $\lambda_1 + \lambda_2 = 1$.

(iv) X contains no fuzzy set $\lambda \neq 0,1$ and it is both T_1 -fuzzy rw-open and T_2 -fuzzy rw-closed or both T_2 -fuzzy rw-open and T_1 -fuzzy rw-closed.

Proof. (i) \Rightarrow (ii). Assume that (i) is true. Then (ii) follows from the definition 2.1 (ii) \Rightarrow (iii). Assume that (ii) is true. Let us suppose that there exists a T_1 -fuzzy r_w -closed set $\lambda_1 \neq 1$ and a T_2 -fuzzy r_w -closed set $\lambda_2 \neq 1$ such that $\lambda_1 + \lambda_2 = 1$. Then $(1 - \lambda_1) \neq 1 - 1 \neq 0$ is a non-zero T_1 -fuzzy r_w -open set. Similarly we get $1 - \lambda_2$ is a non-zero T_2 -fuzzy r_w -open set.

Now

$$(1-\lambda_1)+(1-\lambda_2)=2-(\lambda_1+\lambda_2)=2-1=1.$$

This is a contradiction to (ii). Hence (ii) \Rightarrow (iii).

(iii) \Rightarrow (iv). Assume that (iii) is true. Suppose that X contains a fuzzy set $\lambda \neq 0,1$ which is both T_1 -fuzzy rw-open and T_2 -fuzzy rw-closed. Then $(1-\lambda)$ is a proper T_1 -fuzzy rw-closed set. Also by assumption λ is T_2 -fuzzy rw-closed. Now $(1-\lambda)+\lambda=1$. This is a contradiction to (iii). Hence (iii) \Rightarrow (iv).

(iv) \Rightarrow (i). Consider (iv) is true. Let us suppose that (X, T_1, T_2) is not pairwise fuzzy rw-connected. Then X has proper fuzzy sets λ_1 and λ_2 where λ_1 is T_1 -fuzzy rw-open set and λ_2 is T_2 -fuzzy rw-open set respectively, such that $\lambda_1 + \lambda_2 = 1$.

Now $\lambda_1 + \lambda_2 = 1$ implies $\lambda_1 = 1 - \lambda_2$. This implies that λ_1 is both T_2 -fuzzy *rw*-closed and $\lambda_1 \neq 1$ as λ_2 is a non-zero T_2 -fuzzy *rw*-open set. Clearly $\lambda_1 \neq 0, 1$ is in X. This is a contradiction to (iv). Hence (iv) \Rightarrow (i).

3. Pairwise Fuzzy Super *rw*-Connected Spaces

Definition 3.1 Let (X,T_1,T_2) be any fbts and let λ be any fuzzy set in X. Then

(i) λ is called (1,2) fuzzy regular *rw*-open if $rwInt_{T_1}[rwCl_{T_2}(\lambda)] = \lambda$

(ii) λ is called (2,1) fuzzy regular *rw*-open if $rwInt_{T_2}[rwCl_{T_1}(\lambda)] = \lambda$ and

(iii) λ is called pairwise fuzzy regular rw-open if it is both (1,2) fuzzy regular rw-open and (2,1) fuzzy regular rw-open.

Definition 3.2 Let (X,T_1,T_2) be a *fbts*. Then (X,T_1,T_2) is called pairwise fuzzy super *rw*-connected if it has no proper $(\neq 0,1)$ pairwise fuzzy regular *rw*-open set.

Example 3.1 Let $X = \{a, b\}, T_1 = \{0, 1, \lambda\}$ and $T_2 = \{0, 1, \mu\}$ where $\lambda : X \to [0, 1]$ is such that $\lambda(x) = \frac{1}{4}$ if $x = a, \lambda(x) = 0$ if x = b and $\mu : X \to [0, 1]$ is such that $\mu(x) = \frac{3}{4}$ if $x = a, \mu(x) = 1$ if x = b. Then the fbts (X, T_1, T_2) is clearly pairwise fuzzy super rw-connected space eventhough (X, T_1, T_2) is pairwise fuzzy rw-disconnected space.

Proposition 3.1 If (X,T_1,T_2) is any *fbts*, then (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) where

(i) (X,T_1,T_2) is pairwise fuzzy super *rw*-connected.

(ii)_The T_2 -*rw*-closure (or T_1 -*rw*-closure) of a pariwise fuzzy regular *rw*-open set which is different from zero is 1.

(iii) The T_2 - r_w -interior (or T_1 - r_w -interior) of a pairwise fuzzy regular r_w -closed set which is different from 1 is zero.

Proof. (i) \Rightarrow (ii). Assume (i) is true. Suppose that there exists a pairwise fuzzy regular rw-open set $\lambda \neq 0$ such that $rwCl_{r_2}(\lambda) \neq 1$. Then

 $rwInt_{T_1}[rwCl_{T_2}(\lambda)] \neq 1.(I)$

But since λ is pairwise fuzzy regular open set ,

$$rwInt_{T_1}[rwCl_{T_2}(\lambda)] = \lambda.(II)$$

From (I) and (II) we get $\lambda \neq 1$. Thus we find that (X, T_1, T_2) has a proper pairwise fuzzy regular *rw*-open set λ . This is a contradiction to (i). Hence (i) \Rightarrow (ii).

(ii) \Rightarrow (iii). Assume (ii) is true. Suppose that there exists a pairwise fuzzy regular *rw*-closed set $\lambda \neq 1$, such that $rwInt_{T_{\gamma}}(\lambda) \neq 0$.

Now $\mu = (1 - \lambda) \neq 0$ and μ is a non-zero pairwise fuzzy regular *rw*-open set. Then $rwCl_{T_2}(\mu) = 1 - rwInt_{T_2}(1 - \mu)$

$$= 1 - rwInt_{T_2}(\lambda)$$

 $\neq 1$ (since $rwInt_{T_{\gamma}}(\lambda) \neq 0$)

which is a contradiction to our assumption (ii). Hence (ii) \Rightarrow (iii). This completes the proof of the proposition.

Remark 3.1 The following examples gives the relation between pairwise fuzzy super *rw* -connectedness, pairwise fuzzy *rw*-connectedness and pairwise fuzzy *rw*-disconnectedness.

Example 3.1 Let $X = \{a,b\}, T_1 = \{0,1,\lambda\}$ and $T_2 = \{0,1,\mu\}$ where λ and μ are respectively defined as $\lambda: X \rightarrow [0,1]$ such that $\lambda(x) = 1$ if $x = a, \lambda(x) = 0$ if x = b and $\mu: X \rightarrow [0,1]$ such that $\mu(x) = 1$ if $x = b, \mu(x) = 0$ if x = a. Then fbts it is pairwise fuzzy super rw-connected but (X,T_1,T_2) is not pairwise fuzzy rw-connected space.

Example 3.2 Let $X = \{a, b\}, T_1 = \{0, 1, \lambda\}$ and $T_2 = \{0, 1, \mu\}$ where λ and μ are respectively defined as $\lambda: X \rightarrow [0,1]$ such that $\lambda(x) = \frac{1}{4}$ if $x = a, \lambda(x) = 0$ if x = b and $\mu: X \rightarrow [0,1]$ such that $\mu(x) = \frac{3}{4}$ if $x = b, \mu(x) = 0$ if x = a. Then fbts (X, T_1, T_2) is pairwise fuzzy super rw-disconnected but it is not pairwise fuzzy rw-disconnected space.

4. Pairwise Fuzzy Strongly *rw*-Connected Spaces

Definition 4.1 A fbts (X,T_1,T_2) is said to be pairwise fuzzy strongly rw-connected if it has no proper fuzzy sets $\lambda_1, \lambda_2 \in FRWC_{T_1} \cup FRWC_{T_2}$ such that $\lambda_1 + \lambda_2 \leq 1$. If (X,T_1,T_2) is not pairwise fuzzy strongly rw-connected then it will be called pairwise fuzzy weakly rw-connected

Proposition 4.1 A fbts (X,T_1,T_2) is pairwise fuzzy strongly rw-connected \Leftrightarrow it has no proper fuzzy rw-open sets $\lambda, \mu \in FRWO_{T_1} \cup FRWO_{T_2}$ such that $\lambda + \mu \ge 1$.

Proof. (X,T_1,T_2) is pairwise fuzzy weakly rw-connected \Leftrightarrow it has proper fuzzy sets $f, k \in FRWC_{T_1} \cup FRWC_{T_2}$ such that $f+k \leq 1 \Leftrightarrow$ it has proper fuzzy sets $\lambda, \mu \in FRWO_{T_1} \cup FRWO_{T_2}$ where $\lambda = 1 - f, \mu = 1 - k$ such that $\lambda + \mu \geq 1$.

Remark 4.1 Pairwise fuzzy strong rw -connectedness implies pairwise fuzzy rw -connectedness. However the converse is not true.

Example 4.1 Let X = [0,1]. Define $\lambda: X \to I$ such that $\lambda(x) = \frac{2}{3}$ for all $x \in X$ and $\mu: X \to [0,1]$ is such that $\mu(x) = \frac{1}{2}$ for all $x \in X$. Let $T_1 = \{0,1,\lambda\}, T_2 = \{0,1,\mu\}$. Then fbts (X,T_1,T_2) is pairwise fuzzy *rw*-connected but not pairwise fuzzy strongly *rw*-connected.

Proposition 4.2 Let (X,T_1,T_2) be any *fbts* and $A \subset X$ be any subset. Then the following statements are equivalent.

(i) $(A,T_1/A,T_2/A)$ is pairwise fuzzy strongly *rw*-connected subspace of (X,T_1,T_2) .

(ii) For any proper fuzzy sets $\lambda_1, \lambda_2 \in T_1 \cup T_2, 1_A \leq \lambda_1 / A + \lambda_2 / A \leq \lambda_1 + \lambda_2$ implies either $1_A = \lambda_1 / A$ or $1_A = \lambda_2 / A$.

Proof. (ii) \Rightarrow (i). Suppose A is not pairwise fuzzy strongly rw-connected subset of X.

Then there exists proper fuzzy sets $f, k \in FRWC(T_1 / A) \cup FRWC(T_2 / A)$ such that $f + k \leq 1_A$. Therefore we can find proper fuzzy sets $\lambda_1, \lambda_2 \in T_1 \cup T_2$ such that $\lambda_1 / A = 1_A - f, \lambda_2 / A = 1_A - k$. Then $\lambda_1 / A + \lambda_2 / A = (1_A - f) + (1_A - k)$ = 2 - (f + k)

(*ie*)
$$\lambda_1 / A + \lambda_2 / A \ge 1_A \{\text{since} f + k \le 1_A\}(I)$$

Since

$$0 < \lambda_1 < 1_A(II)$$

and

 $0 < \lambda_2 < 1_A, (III)$

we have from (I), (II) and (III) we get $1_A \neq \lambda_1 / A$ and $1_A \neq \lambda_2 / A$. This proves (ii) \Rightarrow (i).

Now we shall prove (i) \Rightarrow (ii). Suppose there exits proper fuzzy sets $\lambda_1, \lambda_2 \in FRWO_{T_1} \cup FRWO_{T_2}$ such that $1_A \leq \lambda_1 / A + \lambda_2 / A$ but both $1_A \neq \lambda_1 / A$ and $1_A \neq \lambda_2 / A$. This shows, by Proposition 4.1, A is not pairwise fuzzy strongly *rw*-connected. Thus we have shown (i) \Rightarrow (ii). Hence the proposition.

Proposition 4.3 Let $F \subset (X,T_1,T_2)$ be such that $\chi_F \in FRWC_{T_1} \cup FRWC_{T_2}$. Then (X,T_1,T_2) is pairwise fuzzy strongly *rw*-connected implies $(F,T_1/F,T_2/F)$ is pairwise fuzzy strongly *rw*-connected.

Proof. We shall assume that (X,T_1,T_2) is pairwise fuzzy strongly rw-connected. Let $F \subset (X,T_1,T_2)$ be such that $\chi_F \in FRWC_{T_1} \cup FRWC_{T_2}$. We want to show that $(F,T_1/F,T_2/F)$ is pairwise fuzzy strongly rw-connected. Suppose $(F,T_1/F,T_2/F)$ is not pairwise fuzzy strongly rw-connected. This means there exists proper fuzzy sets $f,k \in FRWC(T_1/F) \cup FRWC(T_2/F)$ such that

 $f+k \leq 1_F.(I)$

Hence we can find proper fuzzy sets $\lambda_1, \lambda_2 \in FRWC_{T_1} \cup FRWC_{T_2}$ such that $f = \lambda_1 / F, k = \lambda_2 / F$. Now consider $\lambda_1 \wedge \chi_F + \lambda_2 \wedge \chi_F$. Since $\chi_F \in FRWC_{T_1} \cup FRWC_{T_2}, \lambda_1 \wedge \chi_F, \lambda_2 \wedge \chi_F \in FRWC_{T_1} \cup FRWC_{T_2}$. Further from (I) we find $\lambda_1 \wedge \chi_F + \lambda_2 \wedge \chi_F \leq 1_X$.(II)

This shows (X,T_1,T_2) is not pairwise fuzzy strongly *rw*-connected, which is a contradiction. Hence the proposition.

5. Pairwise Fuzzy Extremally *rw*-Disconnected Spaces

Definition 5.1 A fbts (X,T_1,T_2) is said to be pairwise fuzzy extremally rw-disconnected if T_1 -fuzzy rw-closure of each T_2 -fuzzy rw-open set is T_2 -fuzzy rw-open and T_2 -fuzzy rw-closure of each T_1 -fuzzy rw-open set is T_1 -fuzzy rw-open.

Example 5.1 Let $X = \{a, b, c, d\}$. Define $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \mu_1, \mu_2, \mu_3, \mu_4 : X \rightarrow I$ as follows:

$$\lambda_{1}(x) = \begin{cases} 1 & x = b \\ 0 & x = a, c, d , \end{cases} \qquad \lambda_{2}(x) = \begin{cases} 1 & x = a, b \\ 0 & x = c, d \end{cases}$$
$$\lambda_{3}(x) = \begin{cases} 1 & x = b, d \\ 0 & x = a, c , \end{cases} \qquad \lambda_{4}(x) = \begin{cases} 1 & x = a, b, d \\ 0 & x = c \end{cases}$$
$$\mu_{1}(x) = \begin{cases} 1 & x = c \\ 0 & x = a, b, d , \end{cases} \qquad \mu_{2}(x) = \begin{cases} 1 & x = a, c \\ 0 & x = b, d , \end{cases}$$

$$\mu_3(x) = \begin{cases} 1 & x = c, d \\ 0 & x = a, b \end{cases} \qquad \mu_4(x) = \begin{cases} 1 & x = a, c, d \\ 0 & x = b \end{cases}$$

Clearly $T_1 = \{0, 1, \lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ and $T_2 = \{0, 1, \mu_1, \mu_2, \mu_3, \mu_4\}$ are fuzzy topologies on X. Then we can easily see that the *fbts* (X, T_1, T_2) is pairwise fuzzy extremally *rw*-disconnected eventhough both (X, T_1) and (X, T_2) are fuzzy *rw*-connected spaces.

Proposition 5.1 For any fbts (X, T_1, T_2) , (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i) where

(i) (X,T_1,T_2) is pairwise fuzzy extremally *rw*-disconnected,

(ii) Whenever λ is a T_1 -fuzzy rw-closed set, $rwInt_{T_2}(\lambda)$ is a T_1 -fuzzy rw-closed set. Similarly whenever μ is a T_2 -fuzzy rw-closed set $rwInt_{T_1}(\mu)$ is a T_2 -fuzzy rw-closed set, (iii) Whenever λ is a T_1 -fuzzy rw-open set (T_2 -fuzzy rw-open set) we have $rwCl_{T_1}[1-rwCl_{T_2}(\lambda)] = 1-rwCl_{T_2}(\lambda)$ $(rwCl_{T_2}[1-rwCl_{T_1}(\lambda)] = 1-rwCl_{T_1}(\lambda)).$

Proof. (i) \Rightarrow (ii) Suppose (i) is true. Let λ be a T_1 -fuzzy rw-closed set. Then $(1-\lambda)$ is a T_1 -fuzzy rw-open set. Then from (i) $rwCl_{T_2}(1-\lambda)$ is T_1 -fuzzy rw-open set. Clearly $1-rwCl_{T_2}(1-\lambda)$ is T_1 -fuzzy rw-closed set. But $1-rwCl_{T_2}(1-\lambda) = rwInt_{T_2}(\lambda)$ and so $rwInt_{T_2}(\lambda)$ is T_1 -fuzzy rw-closed set. Hence (i) \Rightarrow (ii). Similar statement for a T_2 -fuzzy rw-closed set also holds.

(ii) \Rightarrow (iii). Assume that (ii) is true. Suppose λ is a T_1 -fuzzy rw-open set. Then $(1-\lambda)$ is a T_1 -fuzzy rw-closed set. Now $rwCl_{T_2}(\lambda)$ is T_1 -fuzzy rw-open and therefore $1 - rwCl_{T_2}(\lambda)$ is T_1 -fuzzy rw-closed.

Therefore $rwCl_{T_1}[1-rwCl_{T_2}(\lambda)] = 1-rwCl_{T_2}(\lambda)$. Similarly, we can show that $rwCl_{T_2}[1-rwCl_{T_1}(\lambda)] = 1-rwCl_{T_1}(\lambda)$ when λ is T_2 -fuzzy rw-open set. Hence (ii) \Rightarrow (iii). (iii) \Rightarrow (i) Assume that (iii) is true. Then λ is a T_1 -fuzzy rw-open set, then $rwCl_{T_1}[1-rwCl_{T_2}(\lambda)] = 1-rwCl_{T_2}(\lambda).(I)$ We claim $rwCl_{T_2}(\lambda)$ is T_1 -fuzzy rw-open. From (I) we have $1 - rwCl_{T_2}(\lambda)$ is a T_1 -fuzzy rw-closed and therefore $rwCl_{T_2}(\lambda)$ is T_1 -fuzzy rw-open which we want to prove. Similarly we can show that whenever μ is a T_2 -fuzzy rw-open set then $rwCl_{T_1}(\mu)$ is T_2 -fuzzy rw-open. Hence, (iii) \Rightarrow (i).

References

[1] k. k. Azad, On fuzzy semi continuity, fuzzy almost continuiy and fuzzy weekly continuity, J. Math. Anal. Appl., (1981), 82, 14.

[2]G. Balasubramanian, Fuzzy disconnectedness and its stronger forms, Indian J. pure appl. Math., 24 (1) (1993), 27 - 30

[3] A. S. Bin Shahna, On fuzzy strong semi-continuity and fuzzy pre-continuity, Fuzzy sets and systems, 44 (1991), 303 - 308.

[4]C. L. Chang, Fuzzy topological spaces, J. Math Anal. Appl., 24 (1968), 182 - 190.

[5]P. Dimitar, Filev and Ronald R. Yager., Operations on fuzzy numbers via fuzzy reasoning, Fuzzy Sets and Systems, 91 (1997), 137 - 142.

[6] U. V. Fatteh, and D. S. Bassan, Fuzzy connectedness and its stronger forms, J. Math. Anal. Appl., 111(1985), 449 - 464.

[7]D. N. Foster, Fuzzy topological groups, J.Math. Anal. Appl., 67 (1979), 549-569.

[8] M. H. Ghanim, E. E. Kerre and A. S. Mashour, Separation axioms, subspaces and sums in Fuzzy topology, J. Math. Anal.Appl., 102 (1984), 189 - 202.

[9]J. A. Goguen, *L*-fuzzy sets, J. Math. Anal. Appl., 18(1). (1967), 145 - 174.

[10] W. X. Gu, and T. Lu, Fuzzy sets, fuzzy linear spaces, Fuzzy sets and systems,49(3) (1992), 377 - 380.

[11] B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl.,50 (1975), 74 - 79.

[12] A. K. Kandel, and W. J. Byatt, Fuzzy sets, fuzzy algebra and fuzzy statistics, Proc. IEEE, 66 (12) (1978) 1619 - 1639.

[13] A. Kandel, A fuzzy techniques in pattern recognition, John Wiley, New York (1982).

[14] A. Kandil, Biroximities and fuzzy bitopological spaces, Simen Stevin., 63 (1989), 45-66.

[15] A. K. Katsaras, and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces J. Math. Anal. Appl., 58(1977), 135 - 146.

[16] A. K. Katsars, Fuzzy proximity spaces, J. Math. Anal. Appl., 68 (1979), 100 - 110.

[17] H. K. Kwan and Y. Cai, A fuzzy neural network and its applications to pattern recognition, IEEE Trans. on fuzzy systems, 2(3) ,(1994) ,185 - 193.

[18]P. Smets, The degree of belief in fuzzy event, Inform. Sci., 25 (1981), 1 - 19.

[19] M. Sugeno, An introductory survey of fuzzy control, Inform. Sci., 36 (1985), 59 - 83.

[20] R. Ronald Yager and P. Dimitar Filev, Generalizing the modeling of fuzzy logic controllers by parametrized aggregation operators, Fuzzy Sets and Systems, 70 (1995), 303 - 313.

[21] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(3) (1971), 512 - 517.

[22] A. Vadivel and P. Revathi, Fuzzy *rw*-connectedness and fuzzy *rw*-disconnectedness in fuzzy topological spaces, accepted in General Mathematics Notes.

[23] R. S. Wali and S. S. Benchalli, Some Topics in General and Fuzzy Topological Spaces, Ph. D Thesis, Karnatak University Dharwd (2006).

[24] L. A. Zadeh, Fuzzy sets, Inform and control, 8, 338, (1965).

[25] A. N. Zahren, J. Fuzzy Math. 2 (1994), 579-586.